Unraveling the Central Role of Global Regulator PprI in Deinococcus radiodurans Through Label-Free Quantitative Proteomics.

通过无标记定量蛋白质组学揭示全球调控因子 PprI 在耐辐射球菌中的核心作用

阅读:7
作者:Zhu Siyu, Liu Feng, Wang Hao, Zhang Yongqian
BACKGROUND: Deinococcus radiodurans, renowned for its exceptional resistance to radiation, provides a robust model for elucidating cellular stress responses and DNA repair mechanisms. Previous studies have established PprI as a key regulator contributing to radiation resistance through its involvement in DNA damage repair pathways, oxidative stress response, and metabolic regulation. METHODS: Building upon these foundations, our study employs label-free quantitative (LFQ) proteomics coupled with high-resolution mass spectrometry to systematically map pprI deletion protein networks by comparing the global proteomic profiles of pprI knockout and wild-type D. radiodurans strains. RESULTS: Under stringent screening criteria, we identified 719 significantly higher and 281 significantly lower abundant proteins in the knockout strain compared to wild-type strains. Functional analysis revealed that PprI deficiency disrupts homologous recombination (HR) repair, activates nucleotide excision repair (NER) and base excision repair (BER) as a compensatory mechanism, and impairs Mn/Fe homeostasis and carotenoid biosynthesis, leading to increased oxidative stress. Furthermore, PprI deficiency induces significant metabolic reprogramming, including impaired purine synthesis, compromised cell wall integrity, etc. Conclusions: These proteomic findings delineate the extensive regulatory network influenced by PprI, revealing coordinated perturbations across multiple stress response systems when PprI is absent.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。