Gag HIV-1 Virus-like Particles and Extracellular Vesicles Functionalization with Spike Epitopes of SARS-CoV-2 Using a Copper-Free Click Chemistry Approach.

利用无铜点击化学方法,对 HIV-1 病毒样颗粒和细胞外囊泡进行 SARS-CoV-2 刺突蛋白表位功能化

阅读:17
作者:García-Trujillo Marc, Lavado-García Jesús, Boix-Besora Arnau, Gòdia Francesc, Cervera Laura
Enveloped nanoparticles such as extracellular vesicles (EVs) and virus-like particles (VLPs) have emerged as promising nanocarriers capable of transporting bioactive molecules for drug delivery and vaccination. Optimized functionalization methodologies are required to increase the functionalization levels of these nanoparticles, enhancing their performance. Here, a bioorthogonal copper-free strain-promoted azide-alkyne cycloaddition (SPAAC) reaction has been optimized to functionalize human immunodeficiency virus type 1 (HIV-1) Gag-based VLPs and EVs. The optimization process has been carried out through reaction kinetics and design of experiments (DoE) using Cy5 as a reporter molecule. The functionalization of both VLPs and EVs has been studied using super-resolution fluorescence microscopy (SRFM), revealing remarkable differences between Gag-VLPs and coproduced EVs. EVs produced by mock transfection and cell growth have been functionalized achieving a mean of 3618.63 ± 48.91 and 6498.75 ± 352.71 Cy5 molecules covalently linked per particle (Cy5(cov)/particle), respectively. Different nanoparticles have been functionalized with two linear B-cell epitopes from the Spike protein of SARS-CoV-2, S(315-338) TSNFRVQPTESIVRFPNITNLCPF and S(648-663) GCLIGAEHVNNSYECD, and analyzed by an immunoassay with sera from COVID-19 patients. The obtained results validate the selected B-cell epitopes and highlight the potential of the optimized functionalization approach for the development of nanoparticle-based vaccines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。