Characterization of spike S1/S2 processing and entry pathways of lentiviral pseudoviruses bearing seasonal human coronaviruses NL63, 229E, and HKU1 spikes.

对携带季节性人类冠状病毒 NL63、229E 和 HKU1 刺突蛋白的慢病毒假病毒的刺突蛋白 S1/S2 加工和进入途径进行表征

阅读:4
作者:Neerukonda Sabari Nath, Vassell Russell, Lusvarghi Sabrina, Liu Shufeng, Akue Adovi, Kukuruga Mark, Wang Tony T, Weiss Carol D, Wang Wei
Although much has been learned about the entry mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), many details of the entry mechanisms of seasonal human coronaviruses (HCoVs) remain less well understood. In the present study, we used 293T cell lines stably expressing angiotensin converting enzyme (ACE2), aminopeptidase N (APN), or transmembrane serine protease 2 (TMPRSS2), which support high-level transduction of lentiviral pseudoviruses bearing spike proteins of seasonal HCoVs, HCoV-NL63, -229E, or -HKU1, respectively, to compare spike processing and virus entry pathways among these viruses. Our results showed that the entry of HCoV-NL63, -229E, and -HKU1 pseudoviruses into cells is sensitive to endosomal acidification inhibitors (chloroquine and NH(4)Cl), indicating entry via the endocytosis route. Although TMPRSS2 expression on target cell surface was required for HCoV-HKU1 spike-mediated entry and cell-cell fusion, we found that only the serine protease domain of TMPRSS2 and not the serine protease activity of TMPRSS2 was required for viral entry via endocytic route. However, the serine protease activity of TMPRSS2 and a furin processing site (RKRR) at the S1/S2 junction were essential for efficient HCoV-HKU1 spike-mediated cell-cell fusion. Additionally, we show that dibasic and monobasic arginine residues at the S1/S2 junctions of spike proteins of HCoV-NL63 and -229E are essential for virus entry, but multi-basic furin processing site at the S1/S2 junction was dispensable for HCoV-HKU1 viral entry. Our findings highlight features of the entry mechanisms of seasonal HCoVs that may support the development of novel treatment strategies.IMPORTANCEDetails of the entry mechanisms of seasonal human coronaviruses (HCoVs) remain to be fully explored. To investigate spike-mediated virus entry of HCoV-NL63, -229E, and -HKU1 CoVs, we employed 293T cells that stably express angiotensin converting enzyme (ACE2), aminopeptidase N (APN), or transmembrane serine protease 2 (TMPRSS2) to study entry mechanisms of pseudoviruses bearing spike proteins of HCoV-NL63, -229E, and -HKU1, respectively. We found that HCoV-NL63, -229E, and -HKU1 pseudoviruses entered cells via the endocytic route independently of cellular serine protease activity and therefore likely depended on endosomal cathepsin activity. Furthermore, we showed that arginine amino acids in S1/S2 junctions of HCoV-NL63 and -229E spikes were essential for entry but not essential for HCoV-HKU1 entry. Our results provide new insights into the S1/S2 junctional residues, cellular receptors, and protease requirements for seasonal HCoV pseudovirus entry into cells that may support the development of novel inhibitors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。