Voltage-gated potassium channels that are composed of Kv3 subunits exhibit distinct electrophysiological properties: activation at more depolarized potentials than other voltage-gated K+ channels and fast kinetics. These channels have been shown to contribute to the high-frequency firing of fast-spiking (FS) GABAergic interneurons in the rat and mouse brain. In the rodent neocortex there are distinct patterns of expression for the Kv3.1b and Kv3.2 channel subunits and of coexpression of these subunits with neurochemical markers, such as the calcium-binding proteins parvalbumin (PV) and calbindin D-28K (CB). The distribution of Kv3 channels and interrelationship with calcium-binding protein expression has not been investigated in primate cortex. We used immunoperoxidase and immunofluorescent labeling and stereological counting techniques to characterize the laminar and cell-type distributions of Kv3-immunoreactive (ir) neurons in macaque V1. We found that across the cortical layers approximately 25% of both Kv3.1b- and Kv3.2-ir neurons are non-GABAergic. In contrast, all Kv3-ir neurons in rodent cortex are GABAergic (Chow et al. [1999] J Neurosci. 19:9332-9345). The putatively excitatory Kv3-ir neurons were mostly located in layers 2, 3, and 4b. Further, the proportion of Kv3-ir neurons that express PV or CB also differs between macaque V1 and rodent cortex. These data indicate that, within the population of cortical neurons, a broader population of neurons, encompassing cells of a wider range of morphological classes may be capable of sustaining high-frequency firing in macaque V1.
Quantitative analysis of neurons with Kv3 potassium channel subunits, Kv3.1b and Kv3.2, in macaque primary visual cortex.
对猕猴初级视觉皮层中含有 Kv3 钾通道亚基 Kv3.1b 和 Kv3.2 的神经元进行定量分析
阅读:4
作者:Constantinople Christine M, Disney Anita A, Maffie Jonathan, Rudy Bernardo, Hawken Michael J
| 期刊: | Journal of Comparative Neurology | 影响因子: | 2.100 |
| 时间: | 2009 | 起止号: | 2009 Oct 1; 516(4):291-311 |
| doi: | 10.1002/cne.22111 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
