Single-molecule Force Spectroscopy on Biomembrane Force Probe to Characterize Force-dependent Bond Lifetimes of Receptor-ligand Interactions on Living Cells.

利用生物膜力探针进行单分子力谱分析,以表征活细胞中受体-配体相互作用的力依赖性键寿命

阅读:4
作者:Zhang Tongtong, An Chenyi, Hu Wei, Chen Wei
The transmembrane receptor-ligand interactions play a vital role in the physiological and pathological processes of living cells, such as immune cell activation, neural synapse formation, or viral invasion into host cells. Mounting evidence suggests that these processes involve mechanosensing and mechanotransduction, which are directly mediated by the force-dependent transmembrane receptor-ligand interactions. Some single-molecule force spectroscopy techniques have been applied to investigate force-dependent kinetics of receptor-ligand interactions. Among these, the biomembrane force probe (BFP), a unique and powerful technique, can quantitatively and accurately determine the force-dependent parameters of transmembrane receptor-ligand interactions at the single-molecule level on living cells. The stiffness, spatial resolution, force, and bond lifetime range of BFP are 0.1-3 pN/nm, 2-3 nm, 1-10 (3) pN, and 5 × 10 (-4) -200 s, respectively. Therefore, this technique is very suitable for studying transient and weak interactions between transmembrane receptors and their ligands. Here, we share in detail the in situ characterization of the single-molecule force-dependent bond lifetime of transmembrane receptor-ligand interactions, based on a force-clamp assay with BFP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。