Identification of a broad family of lipid A late acyltransferases with non-canonical substrate specificity.

鉴定出一类具有非典型底物特异性的脂质 A 晚期酰基转移酶

阅读:4
作者:Rubin Erica J, O'Brien John P, Ivanov Petko L, Brodbelt Jennifer S, Trent M Stephen
Most Gram-negative organisms produce lipopolysaccharide (LPS), a complex macromolecule anchored to the bacterial membrane by the lipid A moiety. Lipid A is synthesized via the Raetz pathway, a conserved nine-step enzymatic process first characterized in Escherichia coli. The Epsilonproteobacterium Helicobacter pylori uses the Raetz pathway to synthesize lipid A; however, only eight of nine enzymes in the pathway have been identified in this organism. Here, we identify the missing acyltransferase, Jhp0255, which transfers a secondary acyl chain to the 3'-linked primary acyl chain of lipid A, an activity similar to that of E. coli LpxM. This enzyme, reannotated as LpxJ due to limited sequence similarity with LpxM, catalyses addition of a C12:0 or C14:0 acyl chain to the 3'-linked primary acyl chain of lipid A, complementing an E. coli†LpxM mutant. Enzymatic assays demonstrate that LpxJ and homologues in Campylobacter jejuni and Wolinella succinogenes can act before the 2' secondary acyltransferase, LpxL, as well as the 3-deoxy-d-manno-octulosonic acid (Kdo) transferase, KdtA. Ultimately, LpxJ is one member of a large class of acyltransferases found in a diverse range of organisms that lack an E. coli†LpxM homologue, suggesting that LpxJ participates in lipid A biosynthesis in place of an LpxM homologue.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。