Volatile anesthetics and endogenous cannabinoid anandamide have additive and independent inhibitory effects on alpha(7)-nicotinic acetylcholine receptor-mediated responses in Xenopus oocytes

挥发性麻醉剂和内源性大麻素 anandamide 对非洲爪蟾卵母细胞中 α (7)-烟碱乙酰胆碱受体介导的反应具有附加和独立的抑制作用

阅读:6
作者:Shelley N Jackson, Sachin K Singhal, Amina S Woods, Marisela Morales, Toni Shippenberg, Li Zhang, Murat Oz

Abstract

In earlier studies, the volatile anesthetics and the endogenous cannabinoid anandamide have been shown to inhibit the function of alpha(7)-nicotinic acetylcholine receptors. In the present study, interactions between the effects of volatile anesthetics and anandamide on the function of alpha(7)-nicotinic acetylcholine receptors expressed in Xenopus oocytes were investigated using the two-electrode voltage-clamp technique. Anandamide and volatile anesthetics isoflurane and halothane inhibited currents evoked with acetylcholine (100 microM) in a reversible and concentration-dependent manner. Coapplication of anandamide and volatile anesthetics caused a significantly greater inhibition of alpha(7)-nicotinic acetylcholine receptor function than anandamide or volatile anesthetics alone. Analyses of oocytes by matrix-assisted laser desorption/ionization mass spectroscopy indicated that volatile anesthetics did not alter the lipid profile of oocytes. Results of studies with chimeric alpha(7)-nicotinic acetylcholine-5-HT(3) receptors comprised of the N-terminal domain of the alpha(7)-nicotinic acetylcholine receptor and the transmembrane and carboxyl-terminal domains of 5-HT(3) receptors suggest that while isoflurane inhibition of the alpha(7)-nicotinic acetylcholine receptor is likely to involve the N-terminal region of the receptor, the site of action for anandamide involves transmembrane and carboxyl-terminal domains of the receptors. These data indicate that endocannabinoids and isoflurane have additive inhibitory effects on alpha(7)-nicotinic acetylcholine receptor function through allosteric binding sites located on the distinct regions of the receptor.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。