Transducin-like enhancer of split 3 (TLE3) in adipose tissue is increased in situations characterized by decreased PPARγ gene expression

在 PPARγ 基因表达降低的情况下,脂肪组织中的转导蛋白样增强子 3 (TLE3) 会增加

阅读:5
作者:Francisco José Ortega, Marta Serrano, Sergio Rodriguez-Cuenca, José María Moreno-Navarrete, María Gómez-Serrano, Mònica Sabater, Jose Ignacio Rodriguez-Hermosa, Gemma Xifra, Wifredo Ricart, Belén Peral, Antonio Vidal-Puig, José Manuel Fernández-Real

Abstract

Transgenic overexpression of adipose tissue (AT) transducin-like enhancer of split 3 (TLE3) mimicked peroxisome proliferator-activated receptor gamma (PPARγ) agonists, improving insulin resistance in mice. This study aimed to investigate TLE3 gene expression (qRT-PCR) and protein (Western blot) in subjects with a wide spectrum of obesity and insulin sensitivity and in an independent cohort of obese subjects following surgery-induced weight loss. TLE3 was analyzed in human adipocytes and after treatment with rosiglitazone. Given the findings in humans, TLE3 was also investigated in mice after a high-fat diet (HFD) and in PPARγ knockout mice. Subcutaneous (SC) AT TLE3 was increased in subjects with type 2 diabetes (T2D). In fact, SC TLE3 was associated with increased fasting glucose (r = 0.25, p = 0.015) and S6K1 activity (r = 0.671, p = 0.003), and with decreased Glut4 (r = -0.426, p = 0.006) and IRS-1 expression (-31 %, p = 0.007) and activation (P-IRS-1/IRS-1, -17 %, p = 0.024). TLE3 was preferentially expressed in mature adipocytes and increased during in vitro differentiation in parallel to PPARγ. Weight loss led to improved insulin sensitivity, increased AT PPARγ and decreased TLE3 (-24 %, p = 0.0002), while rosiglitazone administration downregulated TLE3 gene expression in fully differentiated adipocytes (-45 %, p < 0.0001). The concept that TLE3 may act as a homeostatic linchpin in AT was also supported by its increased expression in HFD-fed mice (39 %, p = 0.013) and PPARγ knockout (74 %, p = 0.001). In summary, increased AT TLE3 in subjects with T2D and in AT from HFD-fed and PPARγ knockout mice suggest that TLE3 may play an adaptive regulatory role that improves AT function under decreased PPARγ expression. Key message: TLE3 is expressed in mature adipocytes concomitantly with PPARγ. Subcutaneous adipose TLE3 is increased in T2D patients. Adipose TLE3 is upregulated in genetically ablated PPARγ and HFD-fed mice. TLE3 may be a homeostatic linchpin in insulin resistance and defective PPARγ.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。