Termination factor Rho, responsible for the main factor-dependent pathway of transcription termination and the major inhibitor of antisense transcription, is an emerging regulator of various physiological processes in microorganisms. In Gram-positive bacterium Bacillus subtilis, Rho is involved in the control of cell adaptation to starvation and, in particular, in the control of sporulation, a complex differentiation program leading to the formation of a highly resistant dormant spore. While the initiation of sporulation requires a decrease in Rho protein levels during the transition to stationary phase, the mechanisms regulating the expression of rho gene throughout the cell cycle remain largely unknown. Here we show that a drop in the activity of the vegetative SigA-dependent rho promoter causes the inhibition of rho expression in stationary phase. However, after the initiation of sporulation, rho gene is specifically reactivated in two compartments of the sporulating cell using distinct mechanisms. In the mother cell, rho expression occurs by read-through transcription initiated at the SigH-dependent promoter of the distal spo0F gene. In the forespore, rho gene is transcribed from the intrinsic promoter recognized by the alternative sigma factor SigF. These regulatory elements ensure the activity of Rho during sporulation, which appears important for the proper formation of spores. We provide experimental evidence that disruption of the spatiotemporal expression of rho during sporulation affects the resistance properties of spores, their morphology, and the ability to return to vegetative growth under favorable growth conditions.
Complex sporulation-specific expression of transcription termination factor Rho highlights its involvement in Bacillus subtilis cell differentiation.
转录终止因子 Rho 的复杂孢子形成特异性表达凸显了其在枯草芽孢杆菌细胞分化中的作用
阅读:6
作者:Bidnenko Vladimir, Chastanet Arnaud, Péchoux Christine, Redko-Hamel Yulia, Pellegrini Olivier, Durand Sylvain, Condon Ciarán, Boudvillain Marc, Jules Matthieu, Bidnenko Elena
| 期刊: | Journal of Biological Chemistry | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Dec;300(12):107905 |
| doi: | 10.1016/j.jbc.2024.107905 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
