Data-Driven Subtyping of Executive Function-Related Behavioral Problems in Children.

基于数据的儿童执行功能相关行为问题亚型分析

阅读:5
作者:Bathelt Joe, Holmes Joni, Astle Duncan E
OBJECTIVE: Executive functions (EF) are cognitive skills that are important for regulating behavior and for achieving goals. Executive function deficits are common in children who struggle in school and are associated with multiple neurodevelopmental disorders. However, there is also considerable heterogeneity across children, even within diagnostic categories. This study took a data-driven approach to identify distinct clusters of children with common profiles of EF-related difficulties, and then identified patterns of brain organization that distinguish these data-driven groups. METHOD: The sample consisted of 442 children identified by health and educational professionals as having difficulties in attention, learning, and/or memory. We applied community clustering, a data-driven clustering algorithm, to group children by similarities on a commonly used rating scale of EF-associated behavioral difficulties, the Conners 3 questionnaire. We then investigated whether the groups identified by the algorithm could be distinguished on white matter connectivity using a structural connectomics approach combined with partial least squares analysis. RESULTS: The data-driven clustering yielded 3 distinct groups of children with symptoms of one of the following: (1) elevated inattention and hyperactivity/impulsivity, and poor EF; (2) learning problems; or (3) aggressive behavior and problems with peer relationships. These groups were associated with significant interindividual variation in white matter connectivity of the prefrontal and anterior cingulate cortices. CONCLUSION: In sum, data-driven classification of EF-related behavioral difficulties identified stable groups of children, provided a good account of interindividual differences, and aligned closely with underlying neurobiological substrates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。