Concerted transport and phosphorylation of diacylglycerol at ER-PM contact sites regulate phospholipid dynamics during stress.

内质网-质膜接触位点二酰甘油的协同运输和磷酸化调节应激期间的磷脂动态

阅读:5
作者:Garcia-Hernandez Selene, Morello-López Jorge, Haslam Richard, Amorim-Silva Vitor, Moya-Cuevas José, Catalá Rafael, Michaelson Louise, Pérez-Sancho Jessica, Marković Vedrana, Salinas Julio, Napier Johnathan, Jaillais Yvon, Ruiz-Lopez Noemí, Botella Miguel A
A universal response of plants to environmental stresses is the activation of plasma membrane (PM) phospholipase C, which hydrolyzes phosphoinositides to produce soluble inositol phosphate and diacylglycerol (DAG). Because of their conical shape, DAG amounts have to be tightly regulated or they can destabilize membranes. We previously showed that upon stress, Synaptotagmin1 (SYT1) transports DAG from the PM to the endoplasmic reticulum (ER) at ER-PM Contact Sites (CS). Here, we addressed the fate of the incoming DAG in the ER. We show that diacylglycerol kinases (DGKs) DGK1 and DGK2 form a module with SYT1 functionally coupling DAG transport and phosphorylation at ER-PM CS. Although SYT1 and DGK1/DGK2 do not show exclusive ER-PM CS localization, their interaction occurs specifically at ER-PM CS and the removal of ER-PM CS abolishes the interaction. Lipidomic analysis of a dgk1dgk2 double mutant supports that DGK1 and DGK2 phosphorylate DAG at the ER and transcriptomic and phenotypic analyses indicate that SYT1 and DGK1/DGK2 are functionally related. Taken together, our results highlight a mechanism at ER-PM CS that coordinates the transfer of DAG from the PM to the ER by SYT1 upon stress and the concomitant phosphorylation of DAG by DGK1 and DGK2 at the ER. These findings underscore the critical role of spatial coordination in lipid metabolism during stress-induced membrane remodeling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。