Restoration of myogenesis in ALS-myocytes through miR-26a-5p-mediated Smad4 inhibition and its impact on motor neuron development

miR-26a-5p介导的Smad4抑制作用恢复ALS肌细胞的肌生成及其对运动神经元发育的影响

阅读:5
作者:Caterina Peggion ,Raphael Severino Bonadio ,Roberto Stella ,Silvia Scalabrin ,Laura Pasetto ,Caterina Millino ,Laura Camporeale ,Beniamina Pacchioni ,Valentina Bonetto ,Alessandro Bertoli ,Stefano Cagnin ,Maria Lina Massimino
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset paralytic disorder, characterized primarily by a progressive loss of motor neurons (MNs) in which degeneration skeletal muscle involvement has been demonstrated. Skeletal muscle is a plastic tissue that responds to insults through proliferation and differentiation of satellite cells. Skeletal muscle degeneration and regeneration are finely regulated by signals that regulate satellite cell proliferation and differentiation. It is known that satellite cell differentiation is impaired in ALS, but little is known about the involvement of microRNAs (miRNAs) and their role in intercellular communication in ALS. Here we demonstrated impaired differentiation of satellite cells derived from ALS mice related to the impairment of myogenic p38MAPK and protein kinase A (PKA)/pCREB signaling pathways that can be regulated by miR-882 and -134-5p. These miRNAs participate in autocrine signaling in association with miR-26a-5p that, secreted from wild-type (WT) and captured by ALS myoblasts, enhances ALS-related myoblast differentiation by repressing Smad4-related signals. Moreover, miR-26a-5p and -431-5p work in a paracrine way ameliorating motoneuron differentiation. These findings emphasize the need to better understand intercellular communication and its role in ALS pathogenesis and progression. They also suggest that miRNAs could be targeted or used as therapeutic agents for myofiber and MN regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。