Molecular mechanisms promoting long-term cytopenia after BCMA CAR-T therapy in multiple myeloma.

多发性骨髓瘤 BCMA CAR-T 疗法后长期细胞减少的分子机制

阅读:6
作者:Palacios-Berraquero Maria Luisa, Rodriguez-Marquez Paula, Calleja-Cervantes Maria Erendira, Berastegui Nerea, Zabaleta Aintzane, Burgos Leire, Alignani Diego, San Martin-Uriz Patxi, Vilas-Zornoza Amaia, Rodriguez-Diaz Saray, Inoges Susana, Lopez-Diaz de Cerio Ascensión, Huerga Sofia, Tamariz Esteban, Rifon Jose, Alfonso-Pierola Ana, Lasarte Juan Jose, Paiva Bruno, Hernaez Mikel, Rodriguez-Otero Paula, San-Miguel Jesus, Ezponda Teresa, Rodriguez-Madoz Juan Roberto, Prosper Felipe
Hematologic toxicity is a common side effect of chimeric antigen receptor T-cell (CAR-T) therapies, being particularly severe among patients with relapsed or refractory multiple myeloma (MM). In this study, we characterized 48 patients treated with B-cell maturation antigen (BCMA) CAR-T cells to understand kinetics of cytopenia, identify predictive factors, and determine potential mechanisms underlying these toxicities. We observed that overall incidence of cytopenia was 95.7%, and grade >3 thrombocytopenia and neutropenia, 1 month after infusion, was observed in 57% and 53% of the patients, respectively, being still present after 1 year in 4 and 3 patients, respectively. Baseline cytopenia and high peak inflammatory markers were highly correlated with cytopenia that persisted up to 3 months. To determine potential mechanisms underlying cytopenias, we evaluated the paracrine effect of BCMA CAR-T cells on hematopoietic stem and progenitor cell (HSPC) differentiation using an ex vivo myeloid differentiation model. Phenotypic analysis showed that supernatants from activated CAR-T cells (spCAR) halted HSPC differentiation, promoting more immature phenotypes, which could be prevented with a combination of interferon γ, tumor necrosis factor α/β, transforming growth factor β, interleukin-6 (IL-6) and IL-17 inhibitors. Single-cell RNA sequencing demonstrated upregulation of transcription factors associated with early stages of hematopoietic differentiation in the presence of spCAR (GATA2, RUNX1, CEBPA) and a decrease in the activity of key regulons involved in neutrophil and monocytic maturation (ID2 and MAFB). These results suggest that CAR-T activation induces HSPC maturation arrest through paracrine effects and provides potential treatments to mitigate the severity of this toxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。