Quorum sensing mediates morphology and motility transitions in the model archaeon Haloferax volcanii.

群体感应介导了模式古菌火山盐杆菌的形态和运动转变

阅读:3
作者:Chatterjee Priyanka, Consoli Caroline E, Schiller Heather, Winter Kiersten K, McCallum Monica E, Schulze Stefan, Pohlschroder Mechthild
Quorum sensing (QS) is a mechanism of intercellular communication that enables microbes to alter gene expression and adapt to the environment. This cell-cell signaling is necessary for intra- and interspecies behaviors such as virulence and biofilm formation. While QS has been extensively studied in bacteria, little is known about cell-cell communication in archaea. Here we established an archaeal model system to study QS. We showed that for Haloferax volcanii, the transition from motile rods to non-motile disks is dependent on a possibly novel, secreted small molecule present in cell-free conditioned medium (CM). Moreover, we determined that this putative QS molecule fails to induce the morphology transition in mutants lacking the regulatory factors, DdfA and CirA. Using quantitative proteomics of wild-type cells, we detected significant differential abundances of 236 proteins in the presence of CM. Conversely, in the ΔddfA mutant, addition of CM resulted in only 110 proteins of significant differential abundances. These results confirm that DdfA is involved in CM-dependent regulation. CirA, along with other proteins involved in morphology and swimming motility transitions, is among the proteins regulated by DdfA. These discoveries significantly advance our understanding of microbial communication within archaeal species.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。