Voluntary wheel running prevents formation of membrane attack complexes and myelin degradation after peripheral nerve injury.

自愿轮跑可以防止周围神经损伤后膜攻击复合物的形成和髓鞘的降解

阅读:4
作者:Green-Fulgham Suzanne M, Lacagnina Michael J, Willcox Kendal F, Li Jiahe, Harland Michael E, Ciena Adriano Polican, Rocha Igor R Correia, Ball Jayson B, Dreher Renee A, Zuberi Younus A, Dragavon Joseph M, Chacur Marucia, Maier Steven F, Watkins Linda R, Grace Peter M
Regular aerobic activity is associated with a reduced risk of chronic pain in humans and rodents. Our previous studies in rodents have shown that prior voluntary wheel running can normalize redox signaling at the site of peripheral nerve injury, attenuating subsequent neuropathic pain. However, the full extent of neuroprotection offered by voluntary wheel running after peripheral nerve injury is unknown. Here, we show that six weeks of voluntary wheel running prior to chronic constriction injury (CCI) reduced the terminal complement membrane attack complex (MAC) at the sciatic nerve injury site. This was associated with increased expression of the MAC inhibitor CD59. The levels of upstream complement components (C3) and their inhibitors (CD55, CR1 and CFH) were altered by CCI, but not increased by voluntary wheel running. Since MAC can degrade myelin, which in turn contributes to neuropathic pain, we evaluated myelin integrity at the sciatic nerve injury site. We found that the loss of myelinated fibers and decreased myelin protein which occurs in sedentary rats following CCI was not observed in rats with prior running. Substitution of prior voluntary wheel running with exogenous CD59 also attenuated mechanical allodynia and reduced MAC deposition at the nerve injury site, pointing to CD59 as a critical effector of the neuroprotective and antinociceptive actions of prior voluntary wheel running. This study links attenuation of neuropathic pain by prior voluntary wheel running with inhibition of MAC and preservation of myelin integrity at the sciatic nerve injury site.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。