The microneme protein1 (MIC1) of Chinese 1 Toxoplasma regulates pyroptosis through the TLR4/NLRP3 pathway in macrophages.

中国弓形虫微粒体蛋白1 (MIC1) 通过巨噬细胞中的 TLR4/NLRP3 通路调节细胞焦亡

阅读:5
作者:Sun Wenze, Zhang Fan, Zhu Jinjin, Yu Yanxia, Wang Yang, Luo Qingli, Yu Li
BACKGROUND: TgMIC1, a soluble adhesion protein that typically facilitates parasite invasion, exhibited varying expression levels among distinct virulence strains of Chinese 1 Toxoplasma. This study aims to explore its role in immunological regulation and its association with diverse postinfection outcomes in Toxoplasma infection. METHODS: First, the mic1 knockout strain Wh3Δmic1 was generated and assessed for its virulence and proliferative capacity. Subsequently, the serum inflammation levels were examined in mice infected with Wh3Δmic1, Wh3, and Wh6. Furthermore, rMIC1 and rMIC1-T126A/T220A, which lack binding sites to N-glycan in TLR4, were produced for coculture with bone marrow-derived macrophages (BMDMs) to investigate their impact on pyroptosis. RESULTS: Our data showed Wh3Δmic1 exhibited a significant reduction in invasion efficiency, limited growth, and attenuated inflammatory responses in mice. Additionally, it displayed a decreased capacity to induce pyroptosis when compared with Wh3-infected BMDMs. Moreover, rMIC1 but not rMIC1-T126A/T220A was found to be able to upregulate NOD-like receptor pyrin domain-containing protein 3 (NLRP3) and activate GSDMD and caspase-1 in BMDMs but not in TLR4(-/-) and NLRP3(-/-) BMDMs. CONCLUSIONS: TgMIC1 is implicated in both parasite invasion and the modulation of macrophage pyroptosis via the TLR4/NLRP3 pathway. This investigation indicates that TgMIC1 serves diverse functions in Toxoplasma gondii infection, thereby enhancing comprehension of the immune regulatory mechanisms of the parasite.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。