Alternative splicing (AS) plays an important role in neuronal development, function, and disease. Efforts to analyze the transcriptome of AS in neurons on a wide scale are currently limited. We characterized the transcriptome-wide AS changes in SH-SY5Y neuronal differentiation model, which is widely used to study neuronal function and disorders. Our analysis revealed global changes in five AS programs that drive neuronal differentiation. Motif analysis revealed the contribution of RNA-binding proteins (RBPs) to the regulation of AS during neuronal development. We concentrated on the primary alternative splicing program that occurs during differentiation, specifically on events involving exon skipping (SE). Motif analysis revealed motifs for polypyrimidine tract-binding protein 1 (PTB) and ELAV-like RNA binding protein 1 (HuR/ELAVL1) to be the top enriched in SE events, and their protein levels were downregulated after differentiation. shRNA knockdown of either PTB and HuR was associated with enhanced neuronal differentiation and transcriptome-wide exon skipping events that drive the process of differentiation. At the level of gene expression, we observed only modest changes, indicating predominant post-transcriptional effects of PTB and HuR. We also observed that both RBPs altered cellular responses to oxidative stress, in line with the differentiated phenotype observed after either gene knockdown. Our work characterizes the AS changes in a widely used and important model of neuronal development and neuroscience research and reveals intricate post-transcriptional regulation of neuronal differentiation.
Transcriptome-wide alternative mRNA splicing analysis reveals post-transcriptional regulation of neuronal differentiation
全转录组mRNA可变剪接分析揭示神经元分化的转录后调控
阅读:1
作者:Yuan Zhou ,Sherif Rashad ,Kuniyasu Niizuma
| 期刊: | FEBS Journal | 影响因子: | 5.500 |
| 时间: | 2025 | 起止号: | 2025 Apr;292(8):2051-2070. |
| doi: | 10.1111/febs.17408 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
