Two nonsense GLI3 variants are associated with polydactyly and syndactyly in two families by affecting the sonic hedgehog signaling pathway.

两个无义 GLI3 变异体通过影响音猬因子信号通路,与两个家族的多指畸形和并指畸形相关

阅读:7
作者:Shen Xiaofang, Zhang Shun, Zhang Xin, Zhou Taifeng, Rui Yongjun
BACKGROUND: Polydactyly and syndactyly are congenital limb deformities, segregating in an autosomal-dominant fashion. The variants in the GLI3 gene are closely related to congenital limb malformations. However, the causes underlying polydactyly and syndactyly are not well understood. METHODS: We conducted a whole-exome sequencing on two four-generation Chinese families with polydactyly and syndactyly. Then c.2374C>T and c.1728C>A mutant plasmids were transfected to HEK293T cells and mice limb bud cells to explore the functional consequences of these variants. Western blot and real-time quantitative PCR were used to analyze the expression of GLI3 and Shh. RESULTS: In these two families, the known GLI3 variant (NM_000168.6:c.2374C>T) and the novel GLI3 variant (NM_000168.6:c.1728C>A) contributed to polydactyly and syndactyly. Additionally, the GLI3 c.2374C>T mutant plasmid led to truncated GLI3 protein, and the GLI3 c.1728C>A mutant plasmid led to degraded GLI3 protein. Simultaneously, we demonstrated that the GLI3-mutant plasmids led to decreased Shh expression in mice limb bud cells. CONCLUSION: We demonstrated that the novel GLI3 variant (c.1728C>A) and known GLI3 variant (c.2374C>T) contributed to the malformations in two four-generation pedigrees with polydactyly and syndactyly by affecting SHH signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。