Valproic acid (VPA) is a widely prescribed antiepileptic agent whose teratogenic potential has been recognized. In recent years, VPA has been shown to promote neuronal regeneration; however, the exact molecular mechanisms are not fully understood. This study elucidates the pH-dependent pathway through which VPA promotes the differentiation of satellite glial cells (SGCs) into neurons. We observed sustained intracellular pH elevation during the VPA-induced neural differentiation of SGCs, and the modulation of intracellular pH was shown to influence this differentiation process. Then, we found that VPA regulates intracellular pH through NHE1 (sodium-hydrogen exchanger 1), and that the pharmacological inhibition of NHE1 not only attenuated intracellular pH elevation but also substantially impaired VPA-induced neuronal differentiation. Finally, our results showed that the elevated intracellular pH promoted the neuronal differentiation of SGCs by activating β-catenin signaling. These findings provide novel insights into the mechanisms of VPA-induced neurogenesis, advancing our understanding of its pharmacological profile and informing its potential therapeutic application in neuronal regeneration strategies.
Valproic Acid Promotes the Differentiation of Satellite Glial Cells into Neurons via the pH-Dependent Pathway.
丙戊酸通过 pH 依赖性途径促进卫星胶质细胞分化为神经元
阅读:5
作者:Wang Dongyan, Kang Wenrun, Zhang Jinhui, Xu Jianwei, Wang Ruyi, Xiao Xiangdan, Wei Chao, Yu Wenfeng, Lu Junhou
| 期刊: | Biomolecules | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 Jul 11; 15(7):986 |
| doi: | 10.3390/biom15070986 | 研究方向: | 神经科学、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
