Bioluminescence holds notable promise as a modality in diagnostics due to its high signal-to-noise ratio and absence of incident radiation. However, challenges arise from rapid signal decay and reduced enzyme activity when linked to targeting molecules, limiting its reliability in point-of-care diagnostic applications. Here we introduce the luminescence cascade-based sensor (LUCAS) assay, an enzyme cascade system capable of detecting analytes with ultrahigh sensitivity and prolonged bioluminescence. Utilizing a sequential enzymatic reaction, our assay achieves a greater than 500-fold increase in bioluminescence signal and maintains an 8-fold improvement in signal persistence compared to conventional bioluminescence assays. Implemented on a portable, fully automated device designed for point-of-care settings, our system facilitates rapid (<23âmin) sample-to-answer analysis of viruses without an external power supply. Its accuracy surpasses 94% in the qualitative classification of 177 viral-infected patient samples and 130 viral-spiked serum samples, various pathogens including the respiratory virus SARS-CoV-2, and blood-borne pathogens such as HIV, HBV and HCV as clinical models. The decentralized, rapid, sensitive, specific and cost-effective nature of LUCAS positions it as a viable diagnostic tool for low-resource environments.
Ultrasensitive and long-lasting bioluminescence immunoassay for point-of-care viral antigen detection.
用于即时病毒抗原检测的超灵敏、持久的生物发光免疫分析法
阅读:5
作者:Kim Sungwan, Cho Giwon, Lee Jaebaek, Doshi Khushi, Gharpure Supriya, Kim Jisan, Gwak Juyong, Hardie Joseph M, Kanakasabapathy Manoj K, Kandula Hemanth, Thirumalaraju Prudhvi, Song Younseong, Chen Hui, Kuritzkes Daniel R, Li Jonathan Z, Tsibris Athe M, Shafiee Hadi
| 期刊: | Nature Biomedical Engineering | 影响因子: | 26.600 |
| 时间: | 2025 | 起止号: | 2025 May 30 |
| doi: | 10.1038/s41551-025-01405-9 | 种属: | Viral |
| 研究方向: | 其它 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
