Trithorax regulates long-term memory in Drosophila through epigenetic maintenance of mushroom body metabolic state and translation capacity.

Trithorax 通过表观遗传维持蘑菇体代谢状态和翻译能力来调节果蝇的长期记忆

阅读:5
作者:Raun Nicholas, Jones Spencer G, Kerr Olivia, Keung Crystal, Butler Emily F, Alka Kumari, Krupski Jonathan D, Reid-Taylor Robert A, Ibrahim Veyan, Williams MacKayla, Top Deniz, Kramer Jamie M
The role of epigenetics and chromatin in the maintenance of postmitotic neuronal cell identities is not well understood. Here, we show that the histone methyltransferase Trithorax (Trx) is required in postmitotic memory neurons of the Drosophila mushroom body (MB) to enable their capacity for long-term memory (LTM), but not short-term memory (STM). Using MB-specific RNA-, ChIP-, and ATAC-sequencing, we find that Trx maintains homeostatic expression of several non-canonical MB-enriched transcripts, including the orphan nuclear receptor Hr51, and the metabolic enzyme lactate dehydrogenase (Ldh). Through these key targets, Trx facilitates a metabolic state characterized by high lactate levels in MBγ neurons. This metabolic state supports a high capacity for protein translation, a process that is essential for LTM, but not STM. These data suggest that Trx, a classic regulator of cell type specification during development, has additional functions in maintaining underappreciated aspects of postmitotic neuron identity, such as metabolic state. Our work supports a body of evidence suggesting that a high capacity for energy metabolism is an essential cell identity characteristic for neurons that mediate LTM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。