Trigeminal nerve injury ErbB3/ErbB2 promotes mechanical hypersensitivity.

三叉神经损伤 ErbB3/ErbB2 促进机械性痛觉过敏

阅读:4
作者:Ma Fei, Zhang Liping, Westlund Karin N
BACKGROUND: Chronic constriction injury of the trigeminal infraorbital nerve results in transient analgesia followed by whisker pad mechanical allodynia in rats. Neuregulin 1 expressed on axonal membranes binds receptor tyrosine kinase ErbB, promoting Schwann cell development and remyelination. This study investigated whether orofacial mechanical allodynia is signaled by ErbB3-ErbB2 heterodimers in injured nerves. METHODS: Whisker pad mechanical allodynia (von Frey stimuli) was quantified in wild type rats and in transgenic rats with Sleeping Beauty transposon mutation for neuregulin 1 transgene. Pain-related behavior was retested after intraperitoneal injection of the ErbB2 inhibitor Lapatinib, an agent shown by others to reduce breast cancer pain. Infraorbital nerve injury was evaluated histologically with myelin and neuronal biomarkers. ErbB3 changes over time were measured with western blots. RESULTS: Whisker pad mechanical hypersensitivity began in week 2 in wild type rats (3.11 ± 5.93 g vs. 18.72 ± 0.00 g after sham surgery, n = 9, P < 0.001), indicating trigeminal neuropathic pain, but was not evident in transgenic rats (odds ratio: 1.12, 95% confidence interval: 0.38-3.35). Initiation of statistically significant mechanohypersensitivity was delayed until week 6 after surgery in transgenic rats (3.44 ± 4.60 g vs. 18.72 ± 0.00 g, n = 4, P < 0.001). Mechanical allodynia, which persisted 8 weeks in wild type rats was alleviated by Lapatinib (15 ± 3.89 g vs. 2.45 ± 1.13 g, n = 6, P < 0.001). Infraorbital nerve damage was verified histologically. Statistically significant ErbB3 increases (weeks 5 and 10) in wild type and transgenic rats (week 10) coincided with time points when mechanical hypersensitivity was present. CONCLUSION: The Neuregulin 1-ErbB3-ErbB2 complex is a causal mechanism in nerve injury-induced trigeminal neuropathic pain. Understanding peripheral glial mechanisms after nerve injury will improve neuropathic pain treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。