Hepatic Proteomic Analysis Reveals That Enhanced Carboxylic Acid Metabolism and Oxidoreduction Promote Muscle and Fat Deposition in Muscovy Duck

肝脏蛋白质组学分析显示增强的羧酸代谢和氧化还原促进番鸭肌肉和脂肪沉积

阅读:9
作者:Wanli Yang, Xingyong Chen, Congcong Wei, Yutong Zhao, Zhengquan Liu, Zhaoyu Geng

Abstract

Liver is responsible for 90% of lipid synthesis in poultry; thus, it plays an important role in the growth of Muscovy ducks, which have a high fat deposition ability in a time-dependent manner. Therefore, male Muscovy ducks at 14, 28, 42, and 56 days were selected for body weight (BW), carcass weight (CW), subcutaneous fat thickness (SFT), abdominal fat weight (AFW), intramuscular fat content (IMF), and breast muscle fiber (BMF) diameter and density determination. Two-dimensional electrophoresis (2-DE) combining liquid chromatography linked to tandem mass spectrometry (LC-MS/MS) was used to analyze proteomic changes in liver at each stage. The BW, CW, AFW, SFT, and BMF diameter and density were significantly increased, while IMF content was significantly decreased at 28 to 42 days of age (p < 0.05). There were 57 differentially abundant protein (DEP) spots representing 40 proteins identified among the ages, in which 17, 41 and 4 spots were differentially abundant at 14 vs. 28, 28 vs. 42, and 42 vs. 56, respectively. Gene Ontology enrichment analysis found that DEPs were mostly enriched in the oxidation-reduction process, carboxylic acid metabolism, etc. Protein-protein interaction showed that catalase (CAT), triosephosphate isomerase (TPI), and protein disulfide-isomerase (PDI) were the key proteins responsible for the growth of Muscovy duck. In conclusion, 28 to 42 days of age is the crucial period for Muscovy ducks, and the ability of metabolism and antioxidants were significantly enhanced in liver.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。