CFTR ion transport deficiency primes the epithelium for partial epithelial-mesenchymal transition in cystic fibrosis.

囊性纤维化中 CFTR 离子转运缺陷使上皮细胞更容易发生部分上皮-间质转化

阅读:3
作者:Rodrigues Cláudia S, Canto Matilde, Torres Raquel, Railean Violeta, Ramalho Sofia S, Farinha Carlos M, Pankonien Ines, Amaral Margarida D
INTRODUCTION: Cystic fibrosis (CF) is a monogenic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a Cl(-)/HCO(3) (-) ion channel located at the apical plasma membrane (PM) of epithelial cells. CFTR dysfunction disrupts epithelial barrier integrity, drives progressive airway remodelling and has been associated with epithelial-to-mesenchymal transition (EMT), a process in which cells lose epithelial properties and acquire mesenchymal characteristics. We previously demonstrated that mutant CFTR directly drives partial EMT, independently of secondary events such as bacterial infection or inflammation. METHODS: Here, we investigated whether PM localisation of CFTR alone is sufficient to preserve epithelial integrity or if its ion transport function is also required using polarized CF bronchial epithelial (CFBE) cells expressing wt-, p.Phe508del-, or p.Gly551Asp-CFTR. While p.Phe508del-CFTR is retained in the endoplasmic reticulum (ER) and fails to traffic to the PM, p.Gly551Asp-CFTR reaches the PM but lacks ion transport function. To this end we assessed transepithelial electrical resistance (TEER), cell proliferation, wound healing, and expression of epithelial and mesenchymal markers by Western blot and immunofluorescence. RESULTS: The degree of mesenchymal phenotype was higher in cells expressing p.Phe508del-CFTR vs. those expressing PM localized but non-functional p.Gly551Asp-CFTR. This was evidenced by lower TEER, higher expression of mesenchymal markers (N-cadherin, vimentin), and lower E-/N-cadherin ratio. Furthermore, both CF cells displayed delayed wound healing compared to wt-CFTR cells, while only p.Phe508del-CFTR cells, but not p.Gly551Asp-CFTR cells, showed increased cell proliferation. Moreover, treatment with CFTR modulators (CFTRm) partially restored tight junction integrity by increasing claudin-1 levels and E-/N-cadherin ratio in both mutant cells. TGF-β1 treatment induced EMT in all three cell lines by decreasing epithelial markers (E-cadherin, cytokeratin 18, claudin-1) while increasing N-cadherin levels. However, mesenchymal marker vimentin increased only in CF cells, and more prominently in p.Phe508del-CFTR than in p.Gly551Asp-CFTR cells. Additionally, CFTR inhibition in wt-CFTR cells, partially mimicked p.Gly551Asp-CFTR behaviour, i.e., reduced claudin-1 levels. DISCUSSION: Altogether, these findings demonstrate that the loss of CFTR ion transport, despite the physical presence of (nonfunctional) CFTR at the PM, is enough to trigger partial EMT. However, the severity of the EMT phenotype worsens when CFTR is absent from the PM while also increasing susceptibility to TGF-β1-triggered EMT. Moreover, CFTRm only partially reverse this CF EMT state, indicating that full epithelial integrity will likely require targeting additional factors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。