Multi-subunit RNA Polymerases are responsible for transcription in all kingdoms of life. These enzymes rely on dynamic, highly conserved active site domains such as the so-called "trigger loop" to accomplish steps in the transcription cycle. Mutations in the RNA polymerase II trigger loop confer a spectrum of biochemical and genetic phenotypes that suggest two main classes, which decrease or increase catalysis or other nucleotide addition cycle events. The RNA polymerase II active site relies on networks of residue interactions to function, and mutations likely perturb these networks in ways that may alter mechanisms. Here, we take a structural genetics approach to reveal residue interactions within and surrounding the RNA polymerase II trigger loop - determining its "interaction landscape" - by deep mutational scanning in Saccharomyces cerevisiae RNA polymerase II. This analysis reveals connections between trigger loop residues and surrounding domains, demonstrating that trigger loop function is tightly coupled to its specific enzyme context.
Widespread epistasis shapes RNA polymerase II active site function and evolution.
广泛的上位性影响 RNA 聚合酶 II 活性位点的功能和进化
阅读:5
作者:Duan Bingbing, Qiu Chenxi, Sze Sing-Hoi, Kaplan Craig
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 Aug 27; 16(1):7993 |
| doi: | 10.1038/s41467-025-63304-6 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
