Polychlorinated biphenyl-induced oxidative stress in organotypic co-cultures: experimental dopamine depletion prevents reductions in GABA.

多氯联苯诱导的器官型共培养物氧化应激:实验性多巴胺耗竭可防止 GABA 减少

阅读:3
作者:Lyng Gregory D, Seegal Richard F
Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants that have been demonstrated to be toxic to the dopamine (DA) systems of the central nervous system. One proposed mechanism for PCB-induced DA neurotoxicity is inhibition of the vesicular monoamine transporter (VMAT); such inhibition results in increased levels of unsequestered DA and DA metabolism leading to oxidative stress. We have used an organotypic co-culture system of developing rat striatum and ventral mesencephalon (VM) to determine whether alterations in the vesicular storage of DA, resulting from PCB exposure and consequent induction of oxidative stress, leads to GABA and DA neuronal dysfunction. Twenty-four-hour exposure to an environmentally relevant mixture of PCBs reduced tissue DA and GABA concentrations, increased medium levels of DA and measures of oxidative stress in both the striatum and VM. Alterations in neurochemistry and increases in measures of oxidative stress were blocked in the presence of n-acetylcysteine (NAC). Although NAC treatment did not alter PCB-induced changes in DA neurochemistry, it did protect against reductions in GABA concentration. To determine whether alterations in the vesicular storage of DA were responsible for PCB-induced oxidative stress and consequent reductions in GABA levels, we depleted DA from the co-cultures using alpha-methyl-p-tyrosine (AMPT). AMPT reduced striatal and VM DA levels by 90% and 70%, respectively. PCB exposure, following DA depletion, neither increased levels of oxidative stress nor resulted in GABA depletion. These results suggest that PCB-induced alterations in the vesicular storage of DA, resulting in increased levels of unsequestered DA, leads to increased oxidative stress, depletion of tissue glutathione, and consequent reductions in tissue GABA concentrations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。