Artificial sweeteners are highly sweet, non-nutritive compounds that have become increasingly popular over recent decades despite research suggesting that their consumption has unintended consequences. Specifically, there is evidence suggesting that some of these chemicals interact with bitter taste receptors, implying that sweeteners likely generate complex chemosensory signals. Here, we report the basic sensory characteristics of sweeteners in Drosophila, a common model system used to study the impacts of diet, and find that all noncaloric sweeteners inhibited appetitive feeding responses at higher concentrations. At a cellular level, we found that sucralose and rebaudioside A co-activated sweet and bitter gustatory receptor neurons (GRNs), two populations that reciprocally impact feeding behavior, while aspartame only activated bitter cells. We assessed the behavioral impacts of sweet and bitter co-activation and found that low concentrations of sucralose signal appetitive feeding while high concentrations signal feeding aversion. Finally, silencing bitter GRNs reduced the aversive signal elicited by high concentrations of sucralose and significantly increased sucralose feeding behaviors. Together, we conclude that artificial sweeteners generate a gustatory signal that is more complex than "sweetness" alone, and this bitter co-activation has behaviorally relevant effects on feeding that may help flies flexibly respond to these unique compounds.
Artificial sweeteners differentially activate sweet and bitter gustatory neurons in Drosophila.
人工甜味剂对果蝇的甜味和苦味味觉神经元具有不同的激活作用
阅读:4
作者:Arntsen Christian, Grenon Jake, Chauvel Isabelle, Fraichard Stéphane, Dupas Stéphane, Cortot Jérôme, Audette Kayla, Musso Pierre-Yves, Stanley Molly
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jul 1; 15(1):20785 |
| doi: | 10.1038/s41598-025-08467-4 | 种属: | Drosophila |
| 研究方向: | 神经科学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
