Prokaryotic diversity and biochemical properties in aging artificial pit mud used for the production of Chinese strong flavor liquor.

用于生产中国浓味白酒的陈化人工坑泥中的原核生物多样性和生化特性

阅读:6
作者:Sun Zhongke, Chen Can, Hou Xiaoge, Zhang Jie, Tian Fengshou, Li Chengwei
At present, artificial pit mud (APM) is widely used in Chinese liquor-making industry and plays a particular role in the production of Chinese strong flavor liquor (CSFL). However, APM frequently ages during fermentation, thus becoming unsuitable for sustainable use due to its low-quality. The reasons behind, and results of, APM aging during the production of CSFL are not yet understood. Sequencing the V4 region of the 16S rRNA gene shows that prokaryotic diversity is significantly decreased (Shannon's diversity index, P < 0.01) and community composition is distinctly changed (from 1197 to 865 OTUs) in aging APM. On the phylum level, the increase of Firmicutes and decrease of Proteobacteria are the main consequences of APM aging during the production of CSFL. The counting of cultivatable bacteria confirmed that there was a large increase in Lactobacilli and aerobic spore-forming bacteria in aging low-quality APM (more than twofold). Unexpectedly, the total number of caproic acid-producing bacteria, mainly Clostridia, did not change significantly between the two kinds of APM. Furthermore, biochemical analysis indicates that the pH and the levels of NH(4)(+) and K(+) are decreased in aging low-quality APM (P < 0.01). The results obtained in this study support the possibility that environmental factors (pH, nutrients) induce the decrease of prokaryotic diversity, and the changed community composition influences the environmental properties. Therefore, through interfering with the cycle, APM aging can be controlled potentially by adjustment of environmental factors and/or supplementation of diminished or missed microorganisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。