NAD-independent L-lactate dehydrogenases (l-iLDHs) play important roles in L-lactate utilization of different organisms. All of the previously reported L-iLDHs were flavoproteins that catalyze the oxidation of L-lactate by the flavin mononucleotide (FMN)-dependent mechanism. Based on comparative genomic analysis, a gene cluster with three genes (lldA, lldB, and lldC) encoding a novel type of L-iLDH was identified in Pseudomonas stutzeri A1501. When the gene cluster was expressed in Escherichia coli, distinctive L-iLDH activity was detected. The expressed L-iLDH was purified by ammonium sulfate precipitation, ion-exchange chromatography, and affinity chromatography. SDS-PAGE and successive matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of the purified L-iLDH indicated that it is a complex of LldA, LldB, and LldC (encoded by lldA, lldB, and lldC, respectively). Purified L-iLDH (LldABC) is a dimer of three subunits (LldA, LldB, and LldC), and the ratio between LldA, LldB, and LldC is 1:1:1. Different from the FMN-containing L-iLDH, absorption spectra and elemental analysis suggested that LldABC might use the iron-sulfur cluster for the L-lactate oxidation. LldABC has narrow substrate specificity, and only L-lactate and DL-2-hydrobutyrate were rapidly oxidized. Mg(2+) could activate L-iLDH activity effectively (6.6-fold). Steady-state kinetics indicated a ping-pong mechanism of LldABC for the L-lactate oxidation. Based on the gene knockout results, LldABC was confirmed to be required for the L-lactate metabolism of P. stutzeri A1501. LldABC is the first purified and characterized L-iLDH with different subunits that uses the iron-sulfur cluster as the cofactor. IMPORTANCE: Providing new insights into the diversity of microbial lactate utilization could assist in the production of valuable chemicals and understanding microbial pathogenesis. An NAD-independent L-lactate dehydrogenase (L-iLDH) encoded by the gene cluster lldABC is indispensable for the L-lactate metabolism in Pseudomonas stutzeri A1501. This novel type of enzyme was purified and characterized in this study. Different from the well-characterized FMN-containing L-iLDH in other microbes, LldABC in P. stutzeri A1501 is a dimer of three subunits (LldA, LldB, and LldC) and uses the iron-sulfur cluster as a cofactor.
NAD-Independent L-Lactate Dehydrogenase Required for L-Lactate Utilization in Pseudomonas stutzeri A1501.
假单胞菌 A1501 中 L-乳酸利用所需的 NAD 非依赖性 L-乳酸脱氢酶
阅读:5
作者:Gao Chao, Wang Yujiao, Zhang Yingxin, Lv Min, Dou Peipei, Xu Ping, Ma Cuiqing
| 期刊: | Journal of Bacteriology | 影响因子: | 3.000 |
| 时间: | 2015 | 起止号: | 2015 Jul;197(13):2239-2247 |
| doi: | 10.1128/JB.00017-15 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
