The regulation of metabolism in peripheral tissues is intricately linked to circadian rhythms, with hypoxia-inducible factor-1α (HIF1α) implicated in modulating time-of-day-specific exercise responses. To investigate this relationship, we generated a skeletal muscle-specific HIF1α knockout (KO) mouse model and performed extensive metabolic phenotyping and transcriptomic profiling under both basal conditions and following acute exercise during early rest (ZT3) and active (ZT15) phases. Our findings reveal that HIF1α drives a more robust transcriptional and glycolytic response to exercise at ZT3, promoting glucose oxidation and mannose-6-phosphate production while potentially sparing fatty acid oxidation. In the absence of HIF1α, skeletal muscle metabolism shifts toward oxidative pathways at ZT3, with notable alterations in glucose fate. These results establish HIF1α as an important regulator of time-of-day-specific metabolic adaptations, integrating circadian and energetic signals to optimize substrate utilization. This work highlights the broader significance of HIF1α in coordinating circadian influences on metabolic health and exercise performance.
HIF1α mediates circadian regulation of skeletal muscle metabolism and substrate preference in response to time-of-day exercise.
HIF1α介导骨骼肌代谢的昼夜节律调节和底物偏好,以响应一天中的不同时间的运动
阅读:3
作者:Ehrlich Amy M, MacGregor Kirstin A, Ashcroft Stephen P, Small Lewin, AltıntaÅ Ali, Chibalin Alexander V, Anagho-Mattanovich Matthias, Stocks Ben, Moritz Thomas, Treebak Jonas T, Zierath Juleen R
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2025 | 起止号: | 2025 Jul 15; 122(28):e2504080122 |
| doi: | 10.1073/pnas.2504080122 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
