Exogenous miR-29B Delivery Through a Hyaluronan-Based Injectable System Yields Functional Maintenance of the Infarcted Myocardium

通过基于透明质酸的注射系统输送外源性 miR-29B 可维持梗死心肌的功能

阅读:5
作者:Michael G Monaghan, Monika Holeiter, Eva Brauchle, Shannon L Layland, Yan Lu, Arjun Deb, Abhay Pandit, Ali Nsair, Katja Schenke-Layland

Abstract

Myocardial infarction (MI) results in debilitating remodeling of the myocardial extracellular matrix (ECM). In this proof-of-principle study it was sought to modulate this aggressive remodeling by injecting a hyaluronic acid-based reservoir delivering exogenous microRNA-29B (miR-29B). This proof-of-principal study was executed whereby myocardial ischemia/reperfusion was performed on C57BL/6 mice for 45 min after which five 10 μL boluses of a hydrogel composed of thiolated hyaluronic acid cross-linked with poly (ethylene glycol) diacrylate, containing exogenous miR-29B as an active therapy, were injected into the border zone of the infarcted myocardium. Following surgery, the myocardial function of the animals was monitored up to 5 weeks. Delivering miR-29B locally using an injectable hyaluronan-based hydrogel resulted in the maintenance of myocardial function at 2 and 5 weeks following MI in this proof-of-principle study. In addition, while animals treated with the control of a nontargeting miR delivered using the hyaluronan-based hydrogel had a significant deterioration of myocardial function, those treated with miR-29B did not. Histological analysis revealed a significantly decreased presence of elastin and significantly less immature/newly deposited collagen fibers at the border zone of the infarct. Increased vascularity of the myocardial scar was also detected and Raman microspectroscopy discovered significantly altered ECM-specific biochemical signals at the border zone of the infarct. This preclinical proof-of-principle study demonstrates that an injectable hyaluronic acid hydrogel system could be capable of delivering miR-29B toward maintaining cardiac function following MI. In addition, Raman microspectroscopy revealed subtle, yet significant changes in ECM organization and maturity. These findings have great potential with regard to using injectable biomaterials as a local treatment for ischemic tissue and exogenous miRs to modulate tissue remodeling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。