Activation of muscarinic acetylcholine receptors induces a nitric oxide-dependent long-term depression in rat medial prefrontal cortex

毒蕈碱乙酰胆碱受体的激活会引起大鼠内侧前额叶皮质一氧化氮依赖性长期抑制

阅读:6
作者:Chiung-Chun Huang, Kuei-Sen Hsu

Abstract

Cholinergic neurotransmission in the medial prefrontal cortex (mPFC) is critical for normal processing of cue detection and cognitive performance. However, the mechanism by which cholinergic system modifies mPFC synaptic function remains unclear. Here we show that activation of muscarinic acetylcholine receptors (mAChRs) by carbamoylcholine (CCh) induces long-term depression (CCh-LTD) of excitatory synaptic transmission on mPFC layer V pyramidal neurons. The induction of CCh-LTD is dependent on M(1) mAChR activation but does not require N-methyl-D-aspartate receptor activation or coincident synaptic stimulation. Activation of phospholipase C (PLC), protein kinase C (PKC), and postsynaptic Ca(2+) release from inositol 1,4,5-triphosphate (IP(3)) receptor-sensitive internal stores are required for CCh-LTD induction. The expression of CCh-LTD is likely to be presynaptic because it is accompanied by a decrease in 1/(coefficient of variance)(2) and an increase in synaptic failure and paired-pulse ratio of synaptic responses. CCh-LTD is blocked by nitric oxide (NO) synthase inhibitors, soluble guanylyl cyclase (sGC) inhibitor, and protein kinase G (PKG) inhibitor. Synaptic stimulation of M(1) mAChRs with prolonged paired-pulse low-frequency stimulation also triggers LTD. These results suggest that activation of M(1) mAChRs can induce LTD on mPFC layer V pyramidal neurons through the activation of postsynaptic PLC/PKC/IP(3) receptor- and subsequently presynaptic NO/sGC/PKG-dependent signaling processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。