Transcriptomic profiling of autophagy and apoptosis pathways in liver cancer cells treated with a new tyrosine kinase inhibitor PD161570.

用新型酪氨酸激酶抑制剂 PD161570 治疗肝癌细胞,并对其自噬和凋亡途径进行转录组分析

阅读:3
作者:He Xingxing, Liu Jianping, Zhang Yulian, Xie Bushan
Liver cancer is the third most lethal and prevalent cancer in the Asia‑Pacific regions. Despite the use of tyrosine kinase inhibitors as first‑ and second‑line therapies, the overall survival rate for advanced liver cancer remains dismal and has not improved over the past decade. The present study, through high‑throughput screening, identified and demonstrated that PD161570, a new tyrosine kinase inhibitor, inhibited cell growth and proliferation in liver cancer cells. Mechanistically, PD161570 induced autophagy and enhanced autophagic flux in an autophagy‑related gene (ATG5)‑dependent and mammalian target of rapamycin kinase‑independent manner. Furthermore, when combined with chloroquine treatment, PD161570 not only suppressed cell proliferation but also increased cell apoptosis due to autophagy inhibition. RNA sequencing analysis revealed 1,121 differentially expressed genes in liver cancer cells following PD161570 treatment under autophagy inhibition via ATG5 knockdown. Notably, key molecules involved in autophagy (such as Damage Regulated Autophagy Modulator 1) and apoptosis regulators (including HRK, CTSS, BIRC3, BBC3, DDIT3 and GADD45B), were identified. Functional enrichment analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), demonstrated enrichment in apoptotic and cell death signaling pathways, highlighting the critical role of the mitogen‑activated protein kinases signaling pathway. In conclusion, PD161570 elicited an ATG5‑dependent autophagic process in liver cancer cells, while simultaneously enhancing apoptosis under conditions of autophagy inhibition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。