Despite the growing interest in developing anti-aging drugs, high costs and low success rates of traditional drug discovery methods pose significant challenges. Aging is a complex biological process associated with numerous diseases, making the identification of compounds that can modulate aging mechanisms critically important. Accelerating the discovery of potential anti-aging compounds is essential to overcome these barriers and enhance lifespan and healthspan. Here, we present ElixirSeeker, a machine learning framework designed to maximize feature capture of lifespan-extending compounds through multi-fingerprint fusion mechanisms. Utilizing this approach, we identified several promising candidate drugs from external compound databases. We tested the top six hits in Caenorhabditis elegans and found that four of these compounds-including Praeruptorin C, Polyphyllin VI, Thymoquinone, and Medrysone-extended the organism's lifespan. This study demonstrates that ElixirSeeker effectively accelerates the identification of viable anti-aging compounds, potentially reducing costs and increasing the success rate of drug development in this field.
ElixirSeeker: A Machine Learning Framework Utilizing Fusion Molecular Fingerprints for the Discovery of Lifespan-Extending Compounds.
ElixirSeeker:利用融合分子指纹发现延长寿命化合物的机器学习框架
阅读:4
作者:Pan Yan, Cai Hongxia, Ye Fang, Xu Wentao, Huang Zhihang, Zhu Jingyuan, Gong Yiwen, Li Yutong, Ezemaduka Anastasia Ngozi, Gao Shan, Liu Shunqi, Li Guojun, Li Hao, Yang Jing, Ning Junyu, Xian Bo
| 期刊: | Aging Cell | 影响因子: | 7.100 |
| 时间: | 2025 | 起止号: | 2025 Aug;24(8):e70116 |
| doi: | 10.1111/acel.70116 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
