Mechanistic insight into multiple antibody binding to ADAMTS13 in immune thrombotic thrombocytopenic purpura.

免疫性血栓性血小板减少性紫癜中多抗体与ADAMTS13结合的机制研究

阅读:3
作者:Halkidis Konstantine, Meng Chan, Pillai Vikram G, Shay Madison, Liu Szumam, Zheng X Long
BACKGROUND: Antibody-mediated inhibition of von Willebrand factor (VWF) cleavage by ADAMTS-13 results in immune thrombotic thrombocytopenic purpura (iTTP). However, the effects of multiple antibody binding to ADAMTS-13 are not fully understood. OBJECTIVES: To determine how multiple antibodies affect ADAMTS13 activity under various conditions. METHODS: Single-chain fragments of the variable region isolated via phage display from patients with iTTP, FRETS-VWF73, native ADAMTS-13 in normal human plasma, and hydrogen-deuterium exchange plus mass spectrometry were used. RESULTS: We found that 2 stimulatory antibodies affect ADAMTS-13 turnover rate more than its substrate recognition. Hydrogen-deuterium exchange plus mass spectrometry revealed that 1 of these 2 stimulatory antibodies bound to the CUB2 domain that presumably interacts with the spacer domain of ADAMTS-13. Spacer domain is targeted by most inhibitory antibodies in iTTP. Both inhibitory and stimulating antibodies could bind ADAMTS-13 simultaneously but when both were present the inhibitory activity predominates. The antibody-mediated stimulation was lost, but the inhibition persisted when a modified substrate with the amino acid residue leucine at position 1603 of VWF was replaced by an alanine (VWF73-L1603A), interfering with active site binding. CONCLUSION: These results support the hypothesis that the mechanism of action of both stimulatory and inhibitory anti-ADAMTS-13 antibodies in iTTP is through allosteric modification of the catalytic domain and that inhibition of ADAMTS-13 dominates when both are present. Our findings may provide a new avenue of exploration to develop targeted diagnostic and therapeutic approaches in the management of iTTP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。