ATP and glutamate coordinate contractions in the freshwater sponge Ephydatia muelleri.

ATP 和谷氨酸协调淡水海绵 Ephydatia muelleri 的收缩

阅读:4
作者:Ho Vanessa R, Goss Greg G, Leys Sally P
Sponges (phylum Porifera) are an early diverging animal lineage without nervous and muscular systems, and yet they are able to produce coordinated whole-body contractions in response to disturbances. Little is known about the underlying signalling mechanisms in coordinating such responses. Previous studies demonstrated that sponges respond specifically to chemicals such as l-glutamate and γ-amino-butyric acid (GABA), which trigger and prevent contractions, respectively. Genes for purinergic P2X-like receptors are present in several sponge genomes, leading us to ask whether ATP works with glutamate to coordinate contractions in sponges as it does in other animal nervous systems. Using pharmacological approaches on the freshwater sponge Ephydatia muelleri, we show that ATP is involved in coordinating contractions. Bath application of ATP caused a rapid, sustained expansion of the excurrent canals in a dose-dependent manner. Complete contractions occurred when ATP was added in the presence of apyrase, an enzyme that hydrolyses ATP. Application of ADP, the first metabolic product of ATP hydrolysis, triggered complete contractions, whereas AMP, the subsequent metabolite, did not trigger a response. Blocking ATP from binding and activating P2X receptors with pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) prevented both glutamate- and ATP-triggered contractions, suggesting that ATP works downstream of glutamate. Bioinformatic analysis revealed two P2X receptor sequences, one of which groups with other vertebrate P2X receptors. Altogether, our results confirm that purinergic signalling by ATP is involved in coordinating contractions in the freshwater sponge.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。