An Accurate and Fast (31)P qNMR Assay Method for Oligonucleotide Therapeutics.

一种准确快速的(31)P qNMR 寡核苷酸治疗分析方法

阅读:4
作者:Li Jiayi, Chen Fu, Zhang Deyi, Wang Yan, Kozak Darby, Chen Kang
Chemically modified nucleic acid molecules have been developed as oligonucleotide therapeutics, and its assay is critical in quality assurance. The common DNA/RNA quantification method using UV-260 nm can lack accuracy because of structure modifications and the possible formation of higher-order structure (HOS). Additionally, process-associated water and counterions affect the accuracy in gravimetric analysis. Thus, to improve accuracy, efficiency, and flexibility, in this work a fast (<1 h) externally referenced (31)P quantitative-NMR (qNMR) method was developed. The qNMR assay results agreed within 1-5% of the UV-260 nm results for the single-stranded DNA standards, confirming the method accuracy. Next, an NMR and UV comparison study was performed on intact oligonucleotide drug products. The (31)P qNMR method showed 7 ± 2%, 8 ± 1%, and 12 ± 1% lower concentration values compared with drug product labels for eteplirsen, inotersen, and inclisiran, respectively. Meanwhile the UV-260 nm results showed 28 ± 3%, 10 ± 3%, and 10 ± 1% lower concentrations than the label for the same three drugs. The agreement between NMR and UV for phosphorothioate (PS)-based inotersen and mostly phosphodiester (PO)-based inclisiran suggest that the labeled concentration may have been obtained using different extinction coefficients. The underestimate of UV results for eteplirsen, which has a phosphorodiamidate morpholino oligomer (PMO) structure, suggests that the UV-260 nm extinction coefficient may need to be re-established for the PMO based oligonucleotide. Therefore, the (31)P qNMR method could be a primary assay method for the oligonucleotide drug and reference standard.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。