Inhibition of TFF3 synergizes with c-MET inhibitors to decrease the CSC-like phenotype and metastatic burden in ER+HER2+ mammary carcinoma.

抑制 TFF3 与 c-MET 抑制剂协同作用,可降低 ER+HER2+ 乳腺癌的 CSC 样表型和转移负荷

阅读:5
作者:He Chuyu, Wang Xuejuan, Chiou Yi-Shiou, Basappa Basappa, Zhu Tao, Pandey Vijay, Lobie Peter E
The interaction between HER2 and ERα signaling pathways contributes to resistance to anti-estrogen and HER2-targeted therapies, presenting substantial treatment challenges in ER-positive (ER+) HER2-positive (HER2+) mammary carcinoma (MC). Trefoil Factor-3 (TFF3) has been reported to mediate resistance to both anti-estrogen and anti-HER2 targeted therapies in ER+ and ER+HER2+ MC, respectively. Herein, the function and mechanism of TFF3 in ER+HER2+ MC were delineated; and novel combinatorial therapeutic strategies were identified. Elevated expression of TFF3 promoted the oncogenicity of ER+HER2+ MC cells, including enhanced cell proliferation, survival, anchorage-independent growth, 3D growth, cancer stem cell-like (CSC-like) phenotype, migration, invasion, and xenograft growth. Targeting TFF3 with an interfering RNA plasmid or a small-molecule inhibitor (AMPC) inhibited these oncogenic characteristics, highlighting the therapeutic potential of targeting TFF3 in ER+HER2+ MC. Furthermore, a high-throughput combinatorial anti-cancer compound library screening revealed that AMPC preferentially synergized with receptor tyrosine kinase c-MET inhibitors (c-METis) to reduce cell survival and the CSC-like phenotype. The combination of AMPC and c-METis also synergistically suppressed the in vivo growth of ER+HER2+ MC cell-derived xenografts and abrogated lung metastasis. Mechanistically, TFF3 was observed to activate c-MET signaling through a positive-feedback loop to enhance the CSC-like phenotype of ER+HER2+ MC. Therefore, proof of concept is provided herein that antagonizing of TFF3 is a promising therapeutic strategy in combination with c-MET inhibition for the treatment of ER+HER2+ MC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。