Curcumin (Cur), a natural bioactive compound extracted from Curcuma longa, has garnered extensive interest due to its modulation of inflammation, antioxidant, and anti-tumor properties. However, its therapeutic translation remains constrained by limited systemic bioavailability. Triple-negative breast cancer (TNBC), an aggressive variant of breast malignancies, exhibits strong resistance to conventional therapies and poor prognosis. The present study was designed to clarify the mechanism through which NGR-modified nanovesicles loaded with Cur (NGR-NVs@Cur) reverse immunotherapy resistance in TNBC. Using transcriptomic and network pharmacology analysis, we identified key genes involved in TNBC development and immunotherapy resistance to determine the targets of Cur. In vitro experiments, including SA-β-gal staining, flow cytometry, and glycolysis analysis, validated that TNBC cells induce glycolysis and CD8(+) T cell senescence. NGR-NVs@Cur were successfully constructed and marked by transmission electron microscopy (TEM), dynamic light scattering (DLS), pH-responsive release, and cellular uptake assays. Further cell-based studies demonstrated that NGR-NVs@Cur suppressed TNBC cell proliferation, migration, glycolysis, and reversed CD8(+) T cell senescence. In vivo, both subcutaneous xenograft and adoptive T cell transfer models were developed to evaluate the therapeutic effects of NGR-NVs@Cur in combination with immune checkpoint inhibitors (ICIs, e.g., J43). The results revealed that Cur inhibited TNBC cell glycolysis and T cell senescence by activating TLR9 and suppressing the mTOR pathway, and that NGR-NVs@Cur enhanced targeted Cur delivery and effectively reversed immunotherapy resistance. This study demonstrated a novel strategy by which Cur, delivered via tumor-targeted nanovesicles, modulates glycolysis and CD8(+) T cell senescence through the TLR9-mTOR axis, offering promising insights into overcoming immune resistance in TNBC.
NGR-modified curcumin nanovesicles reverse immunotherapy resistance in triple-negative breast cancer via TLR9 and mTOR pathway modulation.
NGR修饰的姜黄素纳米囊泡通过TLR9和mTOR通路调节逆转三阴性乳腺癌的免疫治疗耐药性
阅读:4
作者:Wang Shuo, Wang Xiaoou, Zheng Xinyu, Jiang Haiyang, Liu Lu, Ma Ningye, Dong Xiaoshen
| 期刊: | Cell Biology and Toxicology | 影响因子: | 5.900 |
| 时间: | 2025 | 起止号: | 2025 Jul 1; 41(1):109 |
| doi: | 10.1007/s10565-025-10055-1 | 研究方向: | 肿瘤 |
| 疾病类型: | 乳腺癌 | 信号通路: | mTOR |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
