Structure-activity studies of PTPRD phosphatase inhibitors identify a 7-cyclopentymethoxy illudalic acid analog candidate for development.

PTPRD 磷酸酶抑制剂的结构活性研究发现了一种 7-环戊基甲氧基伊鲁达酸类似物候选物,可用于开发

阅读:4
作者:Henderson Ian M, Zeng Fanxun, Bhuiyan Nazmul H, Luo Dan, Martinez Maria, Smoake Jane, Bi Fangchao, Perera Chamani, Johnson David, Prisinzano Thomas E, Wang Wei, Uhl George R
Interest in development of potent, selective inhibitors of the phosphatase from the receptor type protein tyrosine phosphatase PTPRD as antiaddiction agents is supported by human genetics, mouse models and studies of our lead compound PTPRD phosphatase inhibitor, 7-butoxy illudalic acid analog 1 (7-BIA). We now report structure-activity relationships for almost 70 7-BIA-related compounds and results that nominate a 7- cyclopentyl methoxy analog as a candidate for further development. While efforts to design 7-BIA analogs with substitutions for other parts failed to yield potent inhibitors of PTPRD's phosphatase, ten 7-position substituted analogs displayed greater potency at PTPRD than 7-BIA. Several were more selective for PTPRD vs the receptor type protein tyrosine phosphatases S, F and J or the nonreceptor type protein tyrosine phosphatase N1 (PTPRS, PTPRF, PTPRJ or PTPN1/PTP1B), phosphatases at which 7-BIA displays activity. In silico studies aided design of novel analogs. A 7-position cyclopentyl methoxy substituted 7-BIA analog termed NHB1109 displayed 600-700 nM potencies in inhibiting PTPRD and PTPRS, improved selectivity vs PTPRS, PTPRF, PTPRJ or PTPN1/PTP1B phosphatases, no substantial potency at other protein tyrosine phosphatases screened, no significant potency at any of the targets of clinically-useful drugs identified in EUROFINS screens and significant oral bioavailability. Oral doses up to 200 mg/kg were well tolerated by mice, though higher doses resulted in reduced weight and apparent ileus without clear organ histopathology. NHB1109 provides a good candidate to advance to in vivo studies in addiction paradigms and toward human use to reduce reward from addictive substances.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。