Cross-neutralization of Influenza A by SARS-CoV-2 specific neutralizing antibodies and polyclonal plasma: Is pre-exposure to SARS-CoV-2 protective against Influenza A?

SARS-CoV-2 特异性中和抗体和多克隆血浆对甲型流感的交叉中和作用:预先接触 SARS-CoV-2 是否能预防甲型流感?

阅读:7
作者:Alam Mohammad Mamun, Salauddin Asma, Moni Sayra, Limon Md Belayet Hasan, Musarrat Raisha, Bosu Sagar, Hossain Mohammad Enayet, Rahman Mohammed Ziaur, Rahman Mustafizur
According to sparse information from various countries, the seasonal influenza virus circulation has drastically decreased during the COVID-19 pandemic. Here, we show the cross-reactivity of anti-SARS-CoV-2 antibodies against influenza viruses. Plasma samples were collected from 311 SARS-CoV-2 infected individuals. The samples were tested for antibody titers against SARS-CoV-2 by ELISA and seasonal influenza virus strains (influenza A/H1N1, A/H3N2, B/Yamagata, and B/Victoria) using a Hemagglutination Inhibition Assay (HAI). In addition, SARS-CoV-2 antibody-positive but Influenza antibody-negative samples (n = 16) were investigated to determine the SARS-CoV-2 antibody-neutralizing potential against influenza viruses by microneutralization (MN) assay. The SARS-CoV-2 genomes were sequenced using Illumina next-generation sequencing, and an in-silico protein structural analysis was performed to identify epitope and antibody binding similarities between SARS-CoV-2 and influenza viruses. Among 16 samples that didn't contain antibodies against Influenza A strains (H1N1 and H3N2), five showed high (MN titer≥20), and six showed moderate (MN titer≥10) capability to neutralize Influenza A. Subsequent in-silico analysis revealed that most efficient binding (>8 kcal/mol) was found between the antibodies of SARS-CoV-2 delta variant (ΔG) with influenza A/H1N1 HA (Hemagglutinin), A/H3N2 HA, A/H1N1 NA (Neuraminidase), and A/H3N2 NA glycoproteins with -12.4, -9.3, -10.1, and -11.7 kcal/mol, respectively. This investigation revealed that neutralizing antibodies of the delta variant cross-reacted with the Influenza A virus, which might protect against influenza viruses and reduce and shift the seasonal influenza circulation during the COVID-19 pandemic. Our findings warrant further study to explain the probable mechanisms of this cross-reactivity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。