Protocol for functional screening of CFTR-targeted genetic therapies in patient-derived organoids using DETECTOR deep-learning-based analysis.

使用 DETECTOR 基于深度学习的分析方法对患者来源的类器官中 CFTR 靶向基因疗法进行功能筛选的方案

阅读:4
作者:Bulcaen Mattijs, Liu Ronald B, Gryspeert Kasper, Thierie Sam, Ramalho Anabela S, Vermeulen François, Casadevall I Solvas Xavier, Carlon Marianne S
Here, we present a protocol for the rapid functional screening of gene editing and addition strategies in patient-derived organoids using the deep-learning-based tool DETECTOR (detection of targeted editing of cystic fibrosis transmembrane conductance regulator [CFTR] in organoids). We describe steps for wet-lab experiments, image acquisition, and CFTR function analysis by DETECTOR. We also detail procedures for applying pre-trained models and training custom models on new customized datasets. For complete details on the use and execution of this protocol, refer to Bulcaen et al.(1).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。