Here, we present a protocol for the rapid functional screening of gene editing and addition strategies in patient-derived organoids using the deep-learning-based tool DETECTOR (detection of targeted editing of cystic fibrosis transmembrane conductance regulator [CFTR] in organoids). We describe steps for wet-lab experiments, image acquisition, and CFTR function analysis by DETECTOR. We also detail procedures for applying pre-trained models and training custom models on new customized datasets. For complete details on the use and execution of this protocol, refer to Bulcaen et al.(1).
Protocol for functional screening of CFTR-targeted genetic therapies in patient-derived organoids using DETECTOR deep-learning-based analysis.
使用 DETECTOR 基于深度学习的分析方法对患者来源的类器官中 CFTR 靶向基因疗法进行功能筛选的方案
阅读:4
作者:Bulcaen Mattijs, Liu Ronald B, Gryspeert Kasper, Thierie Sam, Ramalho Anabela S, Vermeulen François, Casadevall I Solvas Xavier, Carlon Marianne S
| 期刊: | STAR Protocols | 影响因子: | 1.300 |
| 时间: | 2025 | 起止号: | 2025 Mar 21; 6(1):103593 |
| doi: | 10.1016/j.xpro.2024.103593 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
