A splicing variant in EFCAB7 hinders ciliary transport and disrupts cardiac development.

EFCAB7 中的剪接变异会阻碍纤毛运输并破坏心脏发育

阅读:4
作者:Yang Xin, Wang Qiuye, Li Tianyuan, Zhou Yan, Gao Jimiao, Ma Wanting, Zhao Na, Liu Xinyue, Ai Zihe, Cheng Steven Y, Gu Yayun, Zhao Bijun, Yue Shen, Hu Zhibin
The Tetralogy of Fallot (TOF), the most prevalent form of cyanotic congenital heart disease, stems from abnormal development of the outflow tract during embryogenesis. Despite the crucial role played by primary cilia in heart development, there is currently insufficient evidence to establish a causal relationship between defects in genes related to primary cilia and non-syndromic TOF. Here, we performed Sanger sequencing on 131 Chinese patients diagnosed with TOF and identified a splicing variant (c.683-1G > C) in the EFCAB7 gene. This splicing variant triggered exon skipping, leading to the production of a non-functional protein both in vitro and in vivo. Mice carrying this variant exhibited abnormal cardiac development, impaired ciliogenesis, disrupted Hedgehog signaling, and hindered Shh/Gli pathway activity. Through the integration of CUT&Tag data on Glis and bulk RNA-seq profiles of embryonic hearts at E10.5, we found that transcriptional downregulation of Gli target genes, including Myh6, Zfpm1, and Nkx2-5, is a consequence of Shh signaling inhibition. Our findings implicate EFCAB7 as a potential causative gene for TOF, underscoring the indispensable function of primary cilia in the intricate process of cardiac septation during heart development.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。