Glycosylation of canine tetherin is essential for its antiviral activity against H3N2 canine influenza virus.

犬类束缚蛋白的糖基化对其对抗 H3N2 犬流感病毒的抗病毒活性至关重要

阅读:3
作者:Xu Liang, Hou Yuwen, Liu Shizhe, Dai Yixin, Ou Jiajun, Ye Shaotang, Wang Zhen, Lu Gang, Li Shoujun
Tetherin is an interferon-induced-expressing transmembrane protein that utilizes a unique topology to restrict the release of enveloped viruses from the surface of the cell membrane. N-linked glycosylation plays an important role in protein post-translational modifications. To investigate the role of glycosylation in the antiviral activity of canine tetherin, its potential glycosylation sites were predicted and mutated, and the effects of glycosylation site mutations or treatment with a glycosylation inhibitor on the ability of canine tetherin to restrict H3N2 canine influenza virus (CIV) replication were examined. Mutations in the glycosylation sites of canine tetherin (N72A, N99A, and N72,99A) lead to changes in its intracellular distribution and weakened or even lost antiviral activity against H3N2 CIV. Similarly, the subcellular localization of tetherin after tunicamycin treatment was altered, and its antiviral activity was weakened. Colocalization analysis revealed that the colocalization of canine tetherin and H3N2 CIV protein was weakened under the condition of impaired glycosylation. These results indicate that canine tetherin maintains its localization in the cell membrane through glycosylation and exerts its antiviral activity. This study provides new insights into the antiviral mechanisms of host restriction factors and offers a theoretical basis for developing small-molecule anti-influenza strategies targeting glycosylation modifications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。