Transposable elements (TEs) comprise approximately half of eukaryotic genomes and significantly contribute to genome plasticity. In this study, we focused on a specific TE, MERVL, which exhibits particular expression during the 2-cell stage and commonly serves as an indicator of embryonic totipotency. However, its precise role in embryo development remains mysterious. We utilized DRUG-seq to investigate the effects of oxidative damage on genes and TEs expression. Our findings revealed that exposure to hydrogen peroxide (H(2)O(2)) could induce DNA damage, apoptosis, and incomplete DNA demethylation in embryos, which were potentially associated with MERVL expression. To further explore its function, antisense nucleotides (ASO) targeting MERVL were constructed to knockdown the expression in early embryos. Notably, this knockdown led to the occurrence of DNA damage and apoptosis as early as the 2-cell stage, consequently reducing the number of embryos that could progress to the blastocyst stage. Moreover, we discovered that MERVL exerted an influence on the reprogramming of embryonic DNA methylation. In MERVL-deficient embryos, the activity of the DNA demethylase ten-eleven translocation 3 (TET3) was suppressed, resulting in impaired demethylation when compared to normal development. This impairment might underpin the mechanism that impacts embryonic development. Collectively, our study not only verified the crucial role of MERVL in embryonic development but also probed its regulatory function in DNA methylation reprogramming, thereby laying a solid foundation for further investigations into MERVL's role.
Transposition element MERVL regulates DNA demethylation through TET3 in oxidative-damaged mouse preimplantation embryos.
转座元件 MERVL 通过 TET3 调节氧化损伤的小鼠植入前胚胎中的 DNA 去甲基化
阅读:3
作者:Liu Lihong, Ha Siyao, Cao Dan, Li MingQing, Li Zhiling
| 期刊: | Molecular Medicine | 影响因子: | 6.400 |
| 时间: | 2025 | 起止号: | 2025 Mar 12; 31(1):95 |
| doi: | 10.1186/s10020-025-01143-3 | 种属: | Mouse |
| 研究方向: | 表观遗传 | 信号通路: | DNA甲基化 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
