A fluorescence-based temperature jump (T-jump) module was constructed to illustrate the large-domain motion of a given protein upon thermal stimulus on the millisecond time scale. The aqueous sample was readily heated by 5.0 °C in ca. 2 ms with a lasting high temperature plateau (>1 s) upon irradiation with the "optical Riemann sum" of the discrete infrared pulses of different energy sequences from a 1467 nm diode laser operated at 1k Hz. The temperature evolution was revealed by the time-evolved fluorescence intensity change of the dissolved tryptophan. Bovine serum albumin (BSA) and human serum albumin (HSA) were chosen as model proteins, and their fluorescence intensity evolutions were recorded at 36.6-39.9 °C upon T-jump from 35.0 °C, within the range of physiological temperatures. The observed protein dynamics of BSA was characterized with an apparent activation energy of 276 ± 23 kJ mol(-1), whereas HSA did not manifest the dynamic component. In this measurement, only a tiny amount of sample, ca. 1 μL, was required due to the conjugation of the microspot objective, and the initial temperature was readily controlled by a homemade thermostatic pad. This millisecond-resolution technique is advantageous for illustrating the large-domain dynamics of the targeted protein, bridging the characterizations of the localized protein dynamics on nanosecond to microsecond time scales using the fast techniques and the steady-state protein conformational features by conventional methods, such as Fourier-transform infrared and circular dichroism spectroscopies.
A Fluorescence-Based Temperature-Jump Apparatus for Illustrating Protein Dynamics on the Millisecond Time Scale.
一种基于荧光的温度跃变装置,用于展示毫秒时间尺度上的蛋白质动力学
阅读:4
作者:Kung Liang-Che, Chu Li-Kang
| 期刊: | Analytical Chemistry | 影响因子: | 6.700 |
| 时间: | 2025 | 起止号: | 2025 Feb 25; 97(7):3810-3815 |
| doi: | 10.1021/acs.analchem.4c06501 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
