BACKGRUOUND: Sodium-glucose cotransporter type 2 (SGLT2) inhibitors, such as dapagliflozin, are primarily used to lower glucose in type 2 diabetes. Recent studies suggest broader metabolic effects, particularly in the liver. This study explores the molecular mechanisms by which dapagliflozin influences hepatic glucose and lipid metabolism, hypothesizing that it activates the 5'-adenosine monophosphate-activated protein kinase (AMPK)-sirtuin 1 (Sirt1) pathway to promote gluconeogenesis and reduce lipid accumulation via autophagy. METHODS: HepG2 hepatocellular carcinoma cells were treated with dapagliflozin, and Western blotting, quantitative reverse transcription polymerase chain reaction, and fluorescence microscopy were used to assess gluconeogenic enzyme expression and autophagy. In vivo, mice with liver-specific autophagy related 7 (Atg7) deletion and those on a high-fat diet were used to evaluate glucose regulation, lipid metabolism, and autophagy. RESULTS: Dapagliflozin significantly increased expression of gluconeogenic enzymes like phosphoenolpyruvate carboxykinase (PEPCK) in HepG2 cells and enhanced autophagic flux, evidenced by increased light chain 3B (LC3B)-II levels and autophagosome formation. AMPK-Sirt1 activation was confirmed as the underlying mechanism. Additionally, dapagliflozin reduced fatty acid synthesis by suppressing enzymes such as acetyl-CoA carboxylase and fatty acid synthase, while promoting fatty acid degradation via carnitine palmitoyltransferase 1α (CPT1α) upregulation. In high-fat diet mice, dapagliflozin increased hepatic gluconeogenesis and reduced lipid accumulation, though serum cholesterol and triglyceride levels were unaffected. CONCLUSION: Dapagliflozin enhances hepatic gluconeogenesis and reduces steatosis by activating the AMPK-Sirt1 pathway and promoting autophagy. These findings suggest that SGLT2 inhibitors could offer therapeutic benefits for managing hepatic lipid disorders, beyond glycemic control.
Sodium-Glucose Cotransporter-2 Inhibitor Enhances Hepatic Gluconeogenesis and Reduces Lipid Accumulation via AMPK-SIRT1 Activation and Autophagy Induction.
钠-葡萄糖协同转运蛋白-2抑制剂通过AMPK-SIRT1激活和自噬诱导增强肝糖异生并减少脂质积累
阅读:11
作者:Lee Si Woo, Park Hyunki, Lee Minyoung, Lee Hyangkyu, Kang Eun Seok
| 期刊: | Endocrinology and Metabolism | 影响因子: | 4.200 |
| 时间: | 2025 | 起止号: | 2025 Aug;40(4):583-597 |
| doi: | 10.3803/EnM.2024.2223 | 研究方向: | 信号转导 |
| 信号通路: | AMPK、Autophagy | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
