Sperm non-coding RNAs, including micro RNAs, transfer RNA-derived small RNAs, and long non-coding RNAs, are pivotal in cellular cytoskeletal remodeling, early embryonic development, and offspring phenotypes. Despite the identification of circular RNAs (circRNAs) in mammals, the roles of sperm-derived circRNAs in embryogenesis remain largely unexplored. This study identify circRNA-1572, a sperm-derived circRNA deliver into oocytes during fertilization, through whole-transcriptome sequencing of porcine metaphase II (MII) oocytes, purified mature sperm, and in vitro fertilized pronuclear (PN) embryos. Functional assays confirm circRNA-1572 competitively binds to bta-miR-2478-L-2 through a "sponge" mechanism, regulating the expression of the target gene cyclin B2 (CCNB2). Knockdown (KD) of circRNA-1572 or overexpression of bta-miR-2478-L-2 led to reduce levels of CCNB2 mRNA and protein, along with altered fibrous actin (F-actin)Â distribution and aberrant chromosomal organization, leading to increase developmental arrest and impair zygotic genome activation (ZGA) during early porcine embryogenesis. Importantly, these phenotypes are rescued upon supplementary mRNA of CCNB2. Moreover, SMART-seq analysis reveals KD of CCNB2 resulted in delayed degradation of maternal transcripts in 2-cell embryos and delayed initiation of ZGA in 4-cell. This study provides novel insights into the molecular regulatory functions of sperm-derived circRNAs in early mammalian embryogenesis and underscores the impact of paternal factors on embryonic development.
Sperm-Derived CircRNA-1572 Regulates Embryogenesis and Zygotic Genome Activation by Targeting CCNB2 via Bta-miR-2478-L-2.
精子来源的 circRNA-1572 通过 Bta-miR-2478-L-2 靶向 CCNB2 来调节胚胎发生和合子基因组激活
阅读:3
作者:Wu Yanfang, Wei Yaochang, Li Yuelin, Dou Yiming, Yang YongQiang, Liu Hanghang, Wang Xiaoyan, Wang Zheng, Su Jianmin, Zhang Yong, Wang Yongsheng
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2025 | 起止号: | 2025 May;12(18):e2414325 |
| doi: | 10.1002/advs.202414325 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
