Angelman syndrome (AS) is a severe neurological disorder characterized by intellectual disability, absence of speech, spontaneous seizure, and motor dysfunction. The absence of functional maternally derived UBE3A protein is considered the primary cause of AS, yet the downstream signaling pathways remain elusive. Here, we show the voltage-gated K(+) channel Kv4.2 as an activity-dependent substrate for UBE3A. We show that UBE3A binding of Kv4.2 at its N terminus, ubiquitinating residue K103, induces activity-induced Kv4.2 protein loss. In a mouse model of AS, we observe elevated Kv4.2 protein level and abolished kainic acid-induced Kv4.2 protein loss. Moreover, deficits in mEPSC frequency and spike-timing-dependent long-term potentiation, as well as certain behaviors including cognitive inflexibility found in AS mice, are rescued when bred with Kv4.2 conditional knockout mice. These findings indicate a UBE3A downstream pathway regulating plasticity and cognitive behaviors and provide potential targets for the treatment of AS.
Activity-dependent degradation of Kv4.2 contributes to synaptic plasticity and behavior in Angelman syndrome model mice.
Kv4.2 的活动依赖性降解有助于 Angelman 综合征模型小鼠的突触可塑性和行为
阅读:4
作者:Hu Jia-Hua, Malloy Cole, Liu Ying, Park Jung M, Pratt Ashley, Welch Meghyn, Murphy Jonathan G, Abebe Daniel, Karlsson Rose-Marie, Cameron Heather A, Hoffman Dax A
| 期刊: | Cell Reports | 影响因子: | 6.900 |
| 时间: | 2025 | 起止号: | 2025 May 27; 44(5):115583 |
| doi: | 10.1016/j.celrep.2025.115583 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
