BACKGROUND: as we look to extend ex vivo lung perfusion times (EVLP) to improve preservation, the metabolic activity of the lungs will require support from other organ functions. Active functional liver support, including detoxification, synthesis, and regulation, can improve lung preservation during EVLP. This study aimed to demonstrate the effects of hepatic conditioning of the EVLP perfusate on lung endothelium, via the receptor of advanced glycation end-products (RAGE)-nuclear-factor-κB (NF-κB) signaling in vitro. METHODS: we performed in vitro experiments using human lung microvascular endothelial cells (HLMVECs), human hepatocytes, and perfusate (Steen solution). Four experimental groups: 1) fresh Steen (negative controls, NC), 2) EVLP'ed Steen control, this solution collected after 12âh of EVLP of human lungs, 3) hepatocyte conditioned EVLP'ed Steen (Hep-cond.), and 4) a RAGE inhibitor added in EVLP'ed Steen (RAGE inhibitor). HLMVECs were incubated in each testing condition and exposed to hypoxia (1% O(2)/8% CO(2)) for 24âh. Media were collected to investigate NF-κB signaling and endothelial glycocalyx damage. RESULTS: HLMVECs incubated under hypoxia in EVLP'ed Steen showed significantly upregulated NF-κB signal and endothelial damage denoted by increased glycosaminoglycans and matrix metalloproteinase-2 activity among the groups. The Hep-cond. solution significantly attenuated those findings, while the RAGE inhibitor attenuated the NF-κB signal but not endothelial glycocalyx damage. CONCLUSION: Our study demonstrates that hepatic function incorporated into EVLP can ameliorate pulmonary endothelial cells injury under hypoxic normothermic perfusion exposure. Our data supports the concept of incorporating other organ functions into an organ perfusion platform, to enhance lung graft preservation.
Hepatic conditioning results in better lung endothelial cell preservation under hypoxic environment in vitro.
肝脏预处理可使肺内皮细胞在体外缺氧环境下得到更好的保存
阅读:6
作者:Noda Kentaro, Atale Neha, Austin Taylor, Geller David A, Gerlach Jorg, Sanchez Pablo G
| 期刊: | International Journal of Artificial Organs | 影响因子: | 1.300 |
| 时间: | 2025 | 起止号: | 2025 Feb;48(2):84-91 |
| doi: | 10.1177/03913988251315092 | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
